

1

Interfacing C/C++ and Python with SWIG

David M. Beazley

Department of Computer Science
University of Chicago

Chicago, Illinois 60615

beazley@cs.uchicago.edu

SWIG Tutorial 7th International Python Conference

2

SWIG Tutorial 7th International Python Conference

Prerequisites

C/C++ programming

• You’ve written a C program.

• You’ve written a Makefile.

• You know how to use the compiler and linker.

Python programming

• You’ve heard of Python.

• You’ve hopefully written a few Python programs.

Optional, but useful

• Some knowledge of the Python C API.

• C++ programming experience.

Intended Audience

• C/C++ application developers interested in making better programs

• Developers who are adding Python to “legacy” C/C++ code.

• Systems integration (Python as a glue language).

Notes

3

SWIG Tutorial 7th International Python Conference

C/C++ Programming

The good

• High performance.

• Low-level systems programming.

• Available everywhere and reasonably well standardized

The bad

• The compile/debug/nap development cycle.

• Difficulty of extending and modifying.

• Non-interactive.

The ugly

• Writing user-interfaces.

• Writing graphical user-interfaces (worse).

• High level programming.

• Systems integration (gluing components together).

Notes

4

SWIG Tutorial 7th International Python Conference

What Python Brings to C/C++

An interpreted high-level programming environment

• Flexibility.

• Interactivity.

• Scripting.

• Debugging.

• Testing

• Rapid prototyping.

Component gluing

• A common interface can be provided to different C/C++ libraries.

• C/C++ libraries become Python modules.

• Dynamic loading (use only what you need when you need it).

The best of both worlds

• Performance of C

• The power of Python.

Notes

5

SWIG Tutorial 7th International Python Conference

Points to Ponder

“Surely the most powerful stroke for software productivity, reliability, and simplicity
has been the progressive use of high-level languages for programming. Most
observers credit that development with at least a factor of 5 in productivity, and
with concomitant gains in reliability, simplicity, and comprehensibility.”

Frederick Brooks

“The best performance improvement is the transition from the nonworking state to
the working state.”

--- John Ousterhout

“Less than 10% of the code has to do with the ostensible purpose of the system;
the rest deals with input-output, data validation, data structure maintenance, and
other housekeeping”

--- Mary Shaw

“Don’t keep doing what doesn’t work”

--- Anonymous

Notes

6

SWIG Tutorial 7th International Python Conference

Preview

Building Python Modules

• What is an extension module and how do you build one?

SWIG

• Automated construction of Python extension modules.

• Building Python interfaces to C libraries.

• Managing Objects.

• Using library files.

• Customization and advanced features.

Practical Isses

• Working with shared libraries.

• C/C++ coding strategies

• Potential incompatibilities and problems.

• Tips and tricks.

Notes

7

SWIG Tutorial 7th International Python Conference

Python Extension Building

8

SWIG Tutorial 7th International Python Conference

Extending and Embedding Python

There are two basic methods for integrating C/C++ with Python

• Extension writing.

Python access to C/C++.

• Embedding

C/C++ access to the Python interpreter.

We are primarily concerned with “extension writing”.

C/C++

Python

Extending Embedding

Notes

9

SWIG Tutorial 7th International Python Conference

Writing Wrapper Functions

“wrapper” functions are needed to access C/C++

• Wrappers serve as a glue layer between languages.

• Need to convert function arguments from Python to C.

• Need to return results in a Python-friendly form.

int fact(int n) {
if (n <= 1) return 1;
else return n*fact(n-1);

}

C Function

PyObject *wrap_fact(PyObject *self, PyObject *args) {
int n, result;
if (!PyArg_ParseTuple(args,”i:fact”,&n))

return NULL;
result = fact(n);
return Py_BuildValue(“i”,result);

}

Wrapper

Notes

The conversion of data between Python and C is performed using two functions :

int PyArg_ParseTuple(PyObject *args, char *format, ...)
PyObject *Py_BuildValue(char *format, ...)

For each function, the format string contains conversion codes according to the following table :

s = char *
i = int
l = long int
h = short int
c = char
f = float
d = double
O = PyObject *
(items) = A tuple
|items = Optional arguments

These functions are used as follows :

PyArg_ParseTuple(args,”iid”,&a,&b,&c); // Parse an int,int,double
PyArg_ParseTuple(args,”s|s”,&a,&b); // Parse a string and an optional string
Py_BuildValue(“d”,value); // Create a double
Py_BuildValue(“(ddd)”,a,b,c); // Create a 3-item tuple of doubles

Refer to the Python extending and embedding guide for more details.

10

SWIG Tutorial 7th International Python Conference

Module Initialization

All extension modules need to register wrappers with Python

• An initialization function is called whenever you import an extension module.

• The initialization function registers new methods with the Python interpreter.

A simple initialization function :

static PyMethodDef exampleMethods[] = {
 { "fact", wrap_fact, 1 },
 { NULL, NULL }
};

void initexample() {
 PyObject *m;
 m = Py_InitModule("example", exampleMethods);
}

Notes

When using C++, the initialization function must be given C linkage. For example :

extern “C” void initexample() {
...

}

On some machines, particularly Windows, it may be necessary to explicitly export the initialization functions. For example,

#if defined(__WIN32__)
if defined(_MSC_VER)
define EXPORT(a,b) __declspec(dllexport) a b
else
if defined(__BORLANDC__)
define EXPORT(a,b) a _export b
else
define EXPORT(a,b) a b
endif
endif
#else
define EXPORT(a,b) a b
#endif
...
EXPORT(void, initexample) {

...
}

11

SWIG Tutorial 7th International Python Conference

A Complete Extension Example

#include <Python.h>

PyObject *wrap_fact(PyObject *self, PyObject *args) {
int n, result;
if (!PyArg_ParseTuple(args,”i:fact”,&n))

return NULL;
result = fact(n);
return Py_BuildValue(“i”,result);

}

static PyMethodDef exampleMethods[] = {
 { "fact", wrap_fact, 1 },
 { NULL, NULL }
};

void initexample() {
 PyObject *m;
 m = Py_InitModule("example", exampleMethods);
}

Wrapper
Functions

Methods
Table

Initialization
Function

Notes

A real extension module might contain dozens or even hundreds of wrapper functions, but the idea is the same.

12

SWIG Tutorial 7th International Python Conference

Compiling A Python Extension

There are two methods

• Dynamic Loading.

• Static linking.

Dynamic Loading

• The extension module is compiled into a shared library or DLL.

• When you type ‘import’, Python loads and initializes your module on the fly.

Static Linking

• The extension module is compiled into the Python core.

• The module will become a new “built-in” module.

• Typing ‘import’ simply initializes the module.

Given the choice, you should try to use dynamic loading

• It’s usually easier.

• It’s surprisingly powerful if used right.

Notes

Most modern operating systems support shared libraries and dynamic loading. To find out more details, view the man-pages for
the linker and/or C compiler.

13

SWIG Tutorial 7th International Python Conference

Dynamic Loading

Unfortunately, the build process varies on every machine

• Solaris

cc -c -I/usr/local/include/python1.5 \
 -I/usr/local/lib/python1.5/config \
 example.c wrapper.c
ld -G example.o wrapper.o -o examplemodule.so

• Linux

gcc -fpic -c -I/usr/local/include/python1.5 \
 -I/usr/local/lib/python1.5/config \
 example.c wrapper.c
gcc -shared example.o wrapper.o -o examplemodule.so

• Irix

cc -c -I/usr/local/include/python1.5 \
 -I/usr/local/lib/python1.5/config \

example.c wrapper.c
ld -shared example.o wrapper.o -o examplemodule.so

Notes

14

SWIG Tutorial 7th International Python Conference

Dynamic Loading (cont...)

• Windows 95/NT (MSVC++)

Select a DLL project from the AppWizard in Developer Studio. Make sure you add
the following directories to the include path

python-1.5
python-1.5\Include
python-1.5\Pc

Link against the Python library. For example :

python-1.5\vc40\python15.lib

Also....

• If your module is named ‘

example

’, make sure you compile it into a file named
‘

example.so

’ or ‘

examplemodule.so

’.

• You may need to modify the extension to compile properly on all different platforms.

• Not all code can be easily compiled into a shared library (more on that later).

Notes

15

SWIG Tutorial 7th International Python Conference

Static Linking

How it works

• You compile the extension module and link it with the rest of Python to form a new
Python executable.

When would you use it?

• When running Python on esoteric machines that don’t have shared libraries.

• When building extensions that can’t be linked into a shared library.

• If you had a commonly used extension that you wanted to add to the Python core.

C Extensions Python

Custom Python

Notes

16

SWIG Tutorial 7th International Python Conference

Modifying ‘Setup’ to Add an Extension

To add a new extension module to the Python executable

1. Locate the ‘

Modules

’ directory in the Python source directory.

2. Edit the file ‘

Setup

’ by adding a line such as the following :

example example.c wrapper.c

3. Execute the script “

makesetup

”

4. Type ‘

make’ to rebuild the Python executable.

Disadvantages
• Requires the Python source

• May be difficult if you didn’t install Python yourself.

• Somewhat cumbersome during module development and debugging.

Module name C source files

Notes

17SWIG Tutorial 7th International Python Conference

Rebuilding Python by Hand
To manually relink the Python executable (if necessary) :

Fortunately, there is a somewhat easier way (stay tuned).

PREFIX = /usr/local
EXEC_PREFIX = /usr/local

CC = cc

PYINCLUDE = -I$(PREFIX)/include/python1.5 -I$(EXEC_PREFIX)/lib/python1.5/config
PYLIBS = -L$(EXEC_PREFIX)/lib/python1.5/config \
 -lModules -lPython -lObjects -lParser
SYSLIBS = -ldl -lm
PYSRCS = $(EXEC_PREFIX)/lib/python1.5/config/getpath.c \
 $(EXEC_PREFIX)/lib/python1.5/config/config.c
MAINOBJ = $(EXEC_PREFIX)/lib/python1.5/config/main.o
PYTHONPATH = .:$(PREFIX)/lib/python1.5:$(PREFIX)/lib/python1.5/sharedmodules

OBJS = # Additional object files here

all:
 $(CC) $(PYINCLUDE) -DPYTHONPATH='"$(PYTHONPATH)"' -DPREFIX='"$(PREFIX)"' \
 -DEXEC_PREFIX='"$(EXEC_PREFIX)"' -DHAVE_CONFIG_H $(PYSRCS) \
 $(OBJS) $(MAINOBJ) $(PYLIBS) $(SYSLIBS) -o python

Notes

If performing a by-hand build of Python, the file ‘config.c’ contains information about the modules contained in the “Setup”
script. If needed, you can copy config.c and modify it as needed to add your own modules.

The book “Internet Programming with Python”, by Watters, van Rossum, and Ahlstrom contains more information about
rebuilding Python and the process of adding modules in this manner.

18SWIG Tutorial 7th International Python Conference

Using The Module
This is the easy part :

Summary :
• To write a module, you need to write some wrapper functions.

• To build a module, the wrapper code must be compiled into a shared library or staticly
linked into the Python executable (this is the tricky part).

• Using the module is easy.

• If all else fails, read the manual (honestly!).

Python 1.5.1 (#1, May 6 1998) [GCC 2.7.3]
Copyright 1991-1995 Stichting Mathematisch Centrum,
Amsterdam
>>> import example
>>> example.fact(4)
24
>>>

Notes

19SWIG Tutorial 7th International Python Conference

Wrapping a C Application
The process

• Write a Python wrapper function for every C function you want to access.

• Create Python versions of C constants (not discussed).

• Provide access to C variables, structures, and classes as needed.

• Write an initialization function.

• Compile the whole mess into a Python module.

The problem
• Imagine doing this for a huge library containing hundreds of functions.

• Writing wrappers is extremely tedious and error-prone.

• Consider the problems of frequently changing C code.

• Aren’t there better things to be working on?

Notes

20SWIG Tutorial 7th International Python Conference

Extension Building Tools
Stub Generators (e.g. Modulator)

• Generate wrapper function stubs and provide additional support code.

• You are responsible for filling in the missing pieces and making the module work.

Automated tools (e.g. SWIG, GRAD, bgen, etc...)
• Automatically generate Python interfaces from an interface specification.

• May parse C header files or a specialized interface definition language (IDL).

• Easy to use, but somewhat less flexible than hand-written extensions.

Distributed Objects (e.g. ILU)
• Concerned with sharing data and methods between languages

• Distributed systems, CORBA, COM, ILU, etc...

Extensions to Python itself (e.g. Extension classes, MESS, etc...)
• Aimed at providing a high-level C/C++ API to Python.

• Allow for powerful creation of new Python types, providing integration with C++, etc...

Notes :

The Python contributed archives contain a wide variety of programming tools. There is no right or wrong way to extend Python-
-it depends on what kind of problem you’re trying to solve. In some cases, you may want to use many of the tools together.

21SWIG Tutorial 7th International Python Conference

SWIG

22SWIG Tutorial 7th International Python Conference

An Introduction to SWIG
SWIG (Simplified Wrapper and Interface Generator)

• A compiler that turns ANSI C/C++ declarations into scripting language interfaces.

• Completely automated (produces a fully working Python extension module).

• Language neutral. SWIG can also target Tcl, Perl, Guile, MATLAB, etc...

• Attempts to eliminate the tedium of writing extension modules.

ANSI C/C++ declarations

SWIG

Python Perl5 Tcl/Tk Guile ???...

Notes

23SWIG Tutorial 7th International Python Conference

SWIG Features
Core features

• Parsing of common ANSI C/C++ declarations.

• Support for C structures and C++ classes.

• Comes with a library of useful stuff.

• A wide variety of customization options.

• Language independence (works with Tcl, Perl, MATLAB, and others).

• Extensive documentation.

The SWIG philosophy
• There’s more than one way to do it (a.k.a. the Perl philosophy)

• Provide a useful set of primitives.

• Keep it simple, but allow for special cases.

• Allow people to shoot themselves in the foot (if they want to).

Notes

24SWIG Tutorial 7th International Python Conference

A Simple SWIG Example
Some C code

A SWIG interface file

/* example.c */

double Foo = 7.5;

int fact(int n) {
if (n <= 1) return 1;
else return n*fact(n-1);

}

// example.i
%module example
%{
#include "headers.h"
%}

int fact(int n);
double Foo;
#define SPAM 42

Module Name

C declarations

Headers

Notes

Scripting interfaces are typically defined in terms of a special “interface file.” This file contains the ANSI C declarations of
things you want to access, but also contains SWIG directives (which are always preceded by ’%’). The %module directive
specifies the name of the Python extension module. Any code enclosed by %{ ... %} is copied verbatim into the wrapper code
generated by SWIG (this is usually used to include header files and other supporting code).

25SWIG Tutorial 7th International Python Conference

A Simple SWIG Example (cont...)
Building a Python Interface

• SWIG produces a file ‘example_wrap.c’ that is compiled into a Python module.

• The name of the module and the shared library should match.

Using the module

% swig -python example.i
Generating wrappers for Python
% cc -c example.c example_wrap.c \
 -I/usr/local/include/python1.5 \
 -I/usr/local/lib/python1.5/config
% ld -shared example.o example_wrap.o -o examplemodule.so

Python 1.5 (#1, May 06 1998) [GCC 2.7.3]
Copyright 1991-1995 Stichting Mathematisch Centrum,
Amsterdam
>>> import example
>>> example.fact(4)
24
>>> print example.cvar.Foo
7.5
>>> print example.SPAM
42

Notes

The process of building a shared library differs on every machine. Refer to earlier slides for more details.

All global variables are accessed through a special object ‘cvar’ (for reasons explained shortly).

Troubleshooting tips

• If you get the following error, it usually means that the name of your module and the name of the shared library don’t match.

>>> import example
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: dynamic module does not define init function
>>>

• If you get the following error, Python may not be able to find your module.

>>> import example
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named example
>>>

To fix this problem, you may need to modify Python’s path as follows

>>> import sys
>>> sys.path.append("/your/module/path")
>>> import example

• The following error usually means your forgot to link everything or there is a missing library.

>>> import example
python: can't resolve symbol 'foo'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: Unable to resolve symbol
>>>

26SWIG Tutorial 7th International Python Conference

What SWIG Does
Basic C declarations

• C functions become Python functions (or commands).

• C global variables become attributes of a special Python object ’cvar’.

• C constants become Python variables.

Datatypes
• C built-in datatypes are mapped into the closest Python equivalent.

• int, long, short <---> Python integers.

• float, double <---> Python floats

• char, char * <---> Python strings.

• void <---> None

• long long, long double ---> Currently unsupported

SWIG tries to create an interface that is a natural extension of the
underlying C code.

Notes

• Python integers are represented as ’long’ values. All integers will be cast to and from type long when
converting between C and Python.

• Python floats are represented as ’double’ values. Single precision floating point values will be cast to type
double when converting between the languages.

• long long and long double are unsupported due to the fact that they can not be accurately represented
in Python (the values would be truncated).

27SWIG Tutorial 7th International Python Conference

More on Global Variables
Why does SWIG access global variables through ’cvar’?

"Assignment" in Python
• Variable "assignment" in Python is really just a renaming operation.

• Variables are references to objects.
>>> a = [1,2,3]
>>> b = a
>>> b[1] = -10
>>> print a
[1, -10, 3]

• A C global variable is not a reference to an object, it is an object.

• To make a long story short, assignment in Python has a meaning that doesn’t
translate to assignment of C global variables.

Assignment through an object
• C global variables are mapped into the attributes of a special Python object.

• Giving a new value to an attribute changes the value of the C global variable.

• By default, the name of this object is ’cvar’, but the name can be changed.

Notes

Each SWIG generated module has a special object that is used for accessing C global variables present in the interface. By
default the name of this object is ’cvar’ which is short for ’C variables.’ If necessary, the name can be changed using the
-globals option when running SWIG. For example :

% swig -python -globals myvar example.i

changes the name to ’myvar’ instead.

If a SWIG module contains no global variables, the ’cvar’ variable will not be created. Some care is also in order for using
multiple SWIG generated modules--if you use the Python ’from module *’ directive, you will get a namespace collision on
the value of ’cvar’ (unless you explicitly changed its name as described above).

The assignment model in Python takes some getting used to. Here’s a pictorial representation of what’s happening.

a = 4

b = a

a = 7

4a

4a

b

4

a

b

7

28SWIG Tutorial 7th International Python Conference

More on Constants
The following declarations are turned into Python variables

• #define

• const

• enum

Examples :
#define ICONST 5
#define FCONST 3.14159
#define SCONST "hello world"
enum boolean {NO=0, YES=1};
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
const double PI = 3.141592654;
#define MODE 0x04 | 0x08 | 0x40

• The type of a constant is inferred from syntax (unless given explicitly)

• Constant expressions are allowed.

• Values must be defined. For example, ’#define FOO BAR’ does not result in a
constant unless BAR has already been defined elsewhere.

Notes

#define is also used by the SWIG preprocessor to define macros and symbols. SWIG only creates a constant if a #define
directive looks like a constant. For example, the following directives would create constants

#define READ_MODE 1
#define HAVE_ALLOCA 1
#define FOOBAR 8.29993
#define VALUE 4*FOOBAR

The following declarations would not result in constants

#define USE_PROTOTYPES // No value given
#define _ANSI_ARGS_(a) a // A macro
#define FOO BAR // BAR is undefined

29SWIG Tutorial 7th International Python Conference

Pointers
Pointer management is critical!

• Arrays

• Objects

• Most C programs have tons of pointers floating around.

The SWIG type-checked pointer model
• C pointers are handled as opaque objects.

• Encoded with type-information that is used to perform run-time checking.

• Pointers to virtually any C/C++ object can be managed by SWIG.

Advantages of the pointer model
• Conceptually simple.

• Avoids data representation issues (it’s not necessary to marshal objects between a
Python and C representation).

• Efficient (works with large C objects and is fast).

• It is a good match for most C programs.

Notes

The pointer model allows you to pass pointers to C objects around inside Python scripts, pass pointers to other C functions, and so
forth. In many cases this can be done without ever knowing the underlying structure of an object or having to convert C data
structures into Python data structures.

An exception to the rule : SWIG does not support pointers to C++ member functions. This is because such pointers can not be
properly cast to a pointer of type ’void *’ (the type that SWIG uses internally).

30SWIG Tutorial 7th International Python Conference

Pointer Example
%module example

FILE *fopen(char *filename, char *mode);
int fclose(FILE *f);
unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);

// A memory allocation functions
void *malloc(unsigned nbytes);
void free(void *);

import example
def filecopy(source,target):

f1 = example.fopen(source,"r")
f2 = example.fopen(target,"w")
buffer = example.malloc(8192)
nbytes = example.fread(buffer,1,8192,f1)
while nbytes > 0:

example.fwrite(buffer,1,nbytes,f2)
nbytes = example.fread(buffer,1,8192,f1)

example.fclose(f1)
example.fclose(f2)
example.free(buffer)

Notes

• You can use C pointers in exactly the same manner as in C.

• In the example, we didn’t need to know what a FILE was to use it (SWIG does not need to know anything about the data a
pointer actually points to).

• Like C, you have the power to shoot yourself in the foot. SWIG does nothing to prevent memory leaks, double freeing of
memory, passing of NULL pointers, or preventing address violations.

31SWIG Tutorial 7th International Python Conference

Pointer Encoding and Type Checking
Pointer representation

• Currently represented by Python strings with an address and type-signature.

>>> f = example.fopen("test","r")
>>> print f
_f8e40a8_FILE_p
>>> buffer = example.malloc(8192)
>>> print buffer
_1000afe0_void_p
>>>

• Pointers are opaque so the precise Python representation doesn’t matter much.

Type errors result in Python exceptions
>>> example.fclose(buffer)
Traceback (innermost last):
File "<stdin>", line 1, in ?
TypeError: Type error in argument 1 of fclose. Expected _FILE_p.
>>>

• Type-checking prevents most of the common errors.

• Has proven to be extremely reliable in practice.

Notes

• The NULL pointer is represented by the string "NULL"

• Python has a special object "CObject" that can be used to hold pointer values. SWIG does not use this object because it does
not currently support type-signatures.

• Run-time type-checking is essential for reliable operation because the dynamic nature of Python effectively bypasses all type-
checking that would have been performed by the C compiler. The SWIG run-time checker makes up for much of this.

• Future versions of SWIG are likely to change the current pointer representation of strings to an entirely new Python type. This
change should not substantially affect the use of SWIG however.

32SWIG Tutorial 7th International Python Conference

Array Handling
Arrays are pointers

• Same model used in C (the "value" of an array is a pointer to the first element).

• Multidimensional arrays are supported.

• There is no difference between an ordinary pointer and an array.

• However, SWIG does not perform bounds or size checking.

• C arrays are not the same as Python lists or tuples!

%module example

double *create_array(int size);
void spam(double a[10][10][10]);

>>> d = create_array(1000)
>>> print d
_100f800_double_p
>>> spam(d)
>>>

Notes

Pointers and arrays are more-or-less interchangable in SWIG. However, no checks are made to insure that arrays are of the proper
size or even initialized properly (if not, you’ll probably get a segmentation fault).

It may be useful to re-read the section on arrays in your favorite C programming book---there are subtle differences between
arrays and pointers (unfortunately, they are easy to overlook or forget). For example, a pointer of type "double ***" can be
accessed as a three-dimensional array, but is not represented in the same way as a three-dimensional array.

Effective use of arrays may require the use of accessor-functions to access individual members (this is described later).

If you plan to do alot of array manipulation, you may want to check out the Numeric Python extension.

33SWIG Tutorial 7th International Python Conference

Complex Objects
SWIG manipulates all "complex" objects by reference

• The definition of an object is not required.

• Pointers to objects can be freely manipulated.

• Any "unrecognized" datatype is treated as if it were a complex object.

Examples :
double dot_product(Vector *a, Vector *b);
FILE *fopen(char *, char *);
Matrix *mat_mul(Matrix *a, Matrix *b);

Notes

Whenever SWIG encounters an unknown datatype, it assumes that it is a derived datatype and manipulates it by reference.
Unlike the C compiler, SWIG will never generate an error about undefined datatypes. While this may sound strange, it makes it
possible for SWIG to build interfaces with a minimal amount of additional information. For example, if SWIG sees a datatype
’Matrix *’, it’s obviously a pointer to something (from the syntax). From SWIG’s perspective, it doesn’t really matter what the
pointer is actually pointing to--that is, SWIG doesn’t need the definition of Matrix.

34SWIG Tutorial 7th International Python Conference

Passing Objects by Value
What if a program passes complex objects by value?

• SWIG converts pass-by-value arguments into pointers and creates a wrapper
equivalent to the following :

• This transforms all pass-by-value arguments into pass-by reference.

Is this safe?
• Works fine with C programs.

• Seems to work fine with C++ if you aren’t being too clever.

double dot_product(Vector a, Vector b);

double wrap_dot_product(Vector *a, Vector *b) {
 return dot_product(*a,*b);
}

Notes

Trying to implement pass-by-value directly would be extremely difficult---we would be faced with the problem of trying to find a
Python representation of C objects (a problem we would rather avoid).

Make sure you tell SWIG about all typedefs. For example,

Real spam(Real a); // Real is unknown. Use as a pointer

versus

typedef double Real;
Real spam(Real a); // Ah. Real is just a ’double’.

35SWIG Tutorial 7th International Python Conference

Return by Value
Return by value is more difficult...

• What are we supposed to do with the return value?

• Can’t generate a Python representation of it (well, not easily), can’t throw it away.

• SWIG is forced to perform a memory allocation and return a pointer.

Isn’t this a huge memory leak?
• Yes.

• It is the user’s responsibility to free the memory used by the result.

• Better to allow such a function (with a leak), than not at all.

Vector cross_product(Vector a, Vector b);

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector *result = (Vector *) malloc(sizeof(Vector));
*result = cross_product(*a,*b);
return result;

}

Notes

When SWIG is processing C++ libraries, it uses the default copy constructor instead. For example :

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector *result = new Vector(cross_product(*a,*b));
return result;

}

36SWIG Tutorial 7th International Python Conference

Renaming and Restricting
Renaming declarations

• The %name directive can be used to change the name of the Python command.

%name(output) void print();

• Often used to resolve namespace conflicts between C and Python.

Creating read-only variables
• The %readonly and %readwrite directives can be used to change access
permissions to variables.

double foo; // A global variable (read/write)
%readonly
double bar; // A global variable (read only)
double spam; // (read only)
%readwrite

• Read-only mode stays in effect until it is explicitly disabled.

Notes

37SWIG Tutorial 7th International Python Conference

Code Insertion
The structure of SWIG’s output

Header

Wrapper functions

Initialization function

Four directives are available for inserting code
• %{ ... %} inserts code into the header section.

• %wrapper %{ ... %} inserts code into the wrapper section.

• %init %{ ... %} inserts code into the initialization function.

• %inline %{ ... %} inserts code into the header section and "wraps" it.

/* This file was created by SWIG */
#include <Python.h>

PyObject *_wrap_foo(PyObject *, ...) {
...

}
...

void initexample() {
...
}

Notes

These directives insert code verbatim into the output file. This is usually necessary.

The syntax of these directives is loosely derived from YACC parser generators which also use %{,%} to insert supporting code.

Almost all SWIG applications need to insert supporting code into the wrapper output.

38SWIG Tutorial 7th International Python Conference

Code Insertion Examples
Including the proper header files (extremely common)

Module specific initialization

%module opengl
%{
#include <GL/gl.h>
#include <GL/glu.h>
%}

// Now list declarations

%module matlab
...
// Initialize the module when imported.
%init %{
 eng = engOpen("matlab42");
%}

Notes

Inclusion of header files and module specific initialization are two of the most common uses for the code insertion directives.

39SWIG Tutorial 7th International Python Conference

Helper Functions
Sometimes it is useful to write supporting functions

• Creation and destruction of objects.

• Providing access to arrays.

• Accessing internal pieces of data structures.

%module darray
%inline %{
double *new_darray(int size) {

return (double *) malloc(size*sizeof(double));
}
double darray_get(double *a, int index) {

return a[index];
}
void darray_set(double *a, int index, double value) {

a[index] = value;
}
%}

%name(delete_darray) free(void *);

Notes

Helper functions can be placed directly inside an interface file by enclosing them in an %{,%} block.

Helper functions are commonly used for providing access to various datatypes. For our example above, we would be able to use
the functions from Python as follows. For example :

from darray import *

Turn a Python list into a C double array
def createfromlist(l):

d = new_darray(len(l))
for i in range(0,len(l)):

darray_set(d,i,l[i])
return d

Print out some elements of an array
def printelements(a, first, last):

for i in range(first,last):
print darray_get(a,i)

In many cases we may not need to provide Python access, but may need to manufacture objects suitable for passing to other C
functions.

40SWIG Tutorial 7th International Python Conference

Conditional Compilation
Use C preprocessor directives to control SWIG compilation

• The SWIG symbol is defined whenever SWIG is being run.

• Can be used to make mixed SWIG/C header files

/* header.h
 A mixed SWIG/C header file */

#ifdef SWIG
%module example
%{
#include "header.h"
%}
#endif

/* C declarations */
...
#ifndef SWIG
/* Don’t wrap these declarations. */
#endif
...

Notes

SWIG includes an almost complete implementation of the preprocessor that supports #ifdef, #ifndef, #if, #else, #elif,
and #endif directives.

41SWIG Tutorial 7th International Python Conference

File Inclusion
The %include directive

• Includes a file into the current interface file.

• Allows a large interface to be built out of smaller pieces.

• Allows for interface libraries and reuse.

• File inclusion in SWIG is really like an "import." Files can only be included once and
include guards are not required (unlike C header files).

SWIG ignores #include
• Blindly following all includes is probably not what you want.

%module opengl.i

%include gl.i
%include glu.i
%include aux.i
%include "vis.h"
%include helper.i

Notes

Like the C compiler, SWIG library directories can be specified using the -I option. For example :

% swig -python -I/home/beazley/SWIG/lib example.i

Two other directives, %extern and %import are also available, but not described in detail. Refer to the SWIG users manual for
more information.

42SWIG Tutorial 7th International Python Conference

Quick Summary
You now know almost everything you need to know

• C declarations are transformed into Python equivalents.

• C datatypes are mapped to an appropriate Python representation.

• Pointers can be manipulated and are type-checked.

• Complex objects are managed by reference.

• SWIG provides special directives for renaming, inserting code, including files, etc...

This forms the foundation for discussing the rest of SWIG.
• Handling of structures, unions, and classes.

• Using the SWIG library.

• Python wrapper classes.

• Customization.

• And more.

Notes

43SWIG Tutorial 7th International Python Conference

A SWIG Example

44SWIG Tutorial 7th International Python Conference

Building a Python Interface to OpenGL
OpenGL

• A widely available library/standard for 3D graphics.

• Consists of more than 300 functions and about 500 constants.

• Available on most machines (Mesa is a public domain version).

Interface Building Strategy (in a nutshell)
• Copy the OpenGL header files.

• Modify slightly to make a SWIG interface file.

• Clean up errors and warning messages.

• Write a few support functions.

• Build it.

Why OpenGL?
• It’s a significant library that does something real.

• It’s available everywhere.

• Can build a simple Python interface fairly quickly.

Notes

The Mesa library is available at

http://www.ssec.wisc.edu/~brianp/Mesa.html

This example also works with any number of commercial OpenGL implementations.

45SWIG Tutorial 7th International Python Conference

The Strategy
Locate the OpenGL header files

<GL/gl.h> // Main OpenGL header file
<GL/glu.h> // Utility functions
<Gl/glaux.h> // Some auxiliary functions

Build the module
• Write a separate interface file for each library.

gl.i
glu.i
glaux.i

• Combine everything using a master interface file like this

// SWIG Interface to OpenGL
%module opengl
%include gl.i
%include glu.i
%include glaux.i

• Write a few supporting functions to make the interface work a little better.

Notes

46SWIG Tutorial 7th International Python Conference

Preparing the Files

Note : This is only going to be a first attempt.

opengl.i
// OpenGL Interface
%module opengl

%include gl.i
%include glu.i
%include glaux.i

%{
#include <GL/gl.h>
%}
%include “gl.h”

%{
#include <GLU/glu.h>
%}
%include “glu.h”

%{
#include <GL/glaux.h>
%}
%include “glaux.h”

gl.i

glu.i

glaux.i

Notes

47SWIG Tutorial 7th International Python Conference

A First Attempt
Using SWIG1.2a1 we get the following errors

glu.h : Line 231. Error. Function pointer not allowed.
glu.h : Line 271. Error. Function pointer not allowed.
glu.h : Line 354. Error. Function pointer not allowed.

Problem : SWIG parser doesn’t currently allow function pointers

To fix:
• Copy contents of glu.h to glu.i

• Edit out offending declarations

%{
#include <GL/glu.h>
%}
// Insert glu.h here
...
// void gluQuadricCallback (
// GLUquadric *qobj,
// GLenum which,
// void (CALLBACK *fn)();

Also need to fix similar errors in glaux.i

Notes

48SWIG Tutorial 7th International Python Conference

Second Attempt
No more errors!

• In fact, we can load the module and start executing functions

>>> from opengl import *
>>> glClear(GL_DEPTH_BUFFER_BIT)
...

• Instant gratification!

But there are other problems
• Many functions are unusable.

void glMaterialfv(GLenum face, GLenum pname,
 const GLfloat *params);

• No way to manufacture suitable function arguments

Notes

49SWIG Tutorial 7th International Python Conference

Helper Functions
Some functions may be difficult to use from Python

void glMaterialfv(GLenum face, GLenum pname,
 const GLfloat *params);

• ‘params’ is supposed to be an array.

• How do we manufacture these arrays in Python and use them?

Write helper functions

• Python lists can also be used as arrays (see section on customization).

%inline %{
GLfloat *newfv4(GLfloat a, GLfloat b, GLfloat c, GLfloat d) {
 GLfloat *f = (GLfloat *) malloc(4*sizeof(GLfloat));
 f[0] = a;
 f[1] = b;
 f[2] = c;
 f[3] = d;
 return f;
}
%}
// Create a destructor ‘delfv’ that is really just ‘free’
%name(delfv) void free(void *);

Notes

50SWIG Tutorial 7th International Python Conference

Putting it all together
Final interface file :

The steps (summary) :
• Copy header files.

• Make a few minor changes (only about a dozen in this case).

• Write a few helper functions.

• Compile the module.

// opengl.i

%module opengl
%include gl.i
%include glu.i
%include glaux.i
%include help.i

Notes

51SWIG Tutorial 7th International Python Conference

Python OpenGL Example
from opengl import *
...
def displayObjects() :
 torus_diffuse = newfv4(0.7,0.7,0.0,1.0);
 cube_diffuse = newfv4(0.0,0.7,0.7,1.0);
 sphere_diffuse = newfv4(0.7,0.0,0.7,1.0);
 octa_diffuse = newfv4(0.7,0.4,0.4,1.0);
 glPushMatrix();
 glRotatef(30.0, 1.0, 0.0, 0.0);
 glPushMatrix();
 glTranslatef(-0.80, 0.35, 0.0);
 glRotatef(100.0, 1.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE,torus_diffuse);
 auxSolidTorus(0.275, 0.85);
 ...

def display() :
 ...

auxInitDisplayMode (AUX_SINGLE | AUX_RGB |
 AUX_ACCUM | AUX_DEPTH);
auxInitPosition (0, 0, 400, 400);
auxInitWindow ("accanti");
myinit();
reshape(400,400);
display();
...

Notes

52SWIG Tutorial 7th International Python Conference

Summary
Building an interface to a C library is relatively straightfoward

• Can often use header files.

• Might need to make minor changes.

• Write a few helper functions to aid in the process.

Some things to think about
• Wrapping a raw header file might result in an interface that is unusable.

• It is rarely necessary to access everything in a header file from Python.

• SWIG is meant to be fast, but it isn’t a substitute for proper planning

• SWIG allows you to “grow” an interface. Start with raw headers and gradually refine
the interface until you like it.

Is this the only way?
• No, SWIG provides a variety of customization options.

• Stay tuned.

53SWIG Tutorial 7th International Python Conference

Objects

54SWIG Tutorial 7th International Python Conference

Manipulating Objects
The SWIG pointer model (reprise)

• SWIG manages all structures, unions, and classes by reference (i.e. pointers)

• Most C/C++ programs pass objects around as pointers.

• In many cases, writing wrappers and passing opaque pointers is enough.

• However, in some cases you might want more than this.

Issues
• How do you create and destroy C/C++ objects in Python?

• How do you access the internals of an object in Python?

• How do you invoke C++ member functions from Python?

• How do you work with objects in a mixed language environment?

Concerns
• Don’t want to turn Python into C++.

• Don’t want to turn C++ into Python (although this would be an improvement).

• Keep it minimalistic and simple in nature.

Notes

55SWIG Tutorial 7th International Python Conference

Creating and Destroying Objects
Objects can be created and destroyed by writing special functions :

SWIG Interface file

typedef struct {
double x,y,z;

} Vector;

%inline %{
Vector *new_Vector(double x, double y, double z) {

Vector *v = (Vector *) malloc(sizeof(Vector));
v->x = x; v->y = y; v->z = z;
return v;

}

void delete_Vector(Vector *v) {
free(v);

}
%}

Notes

56SWIG Tutorial 7th International Python Conference

Creating and Using Objects in Python

• Special C helper functions are used to construct or destroy objects.

• The model is not radically different than C---we’re just manipulating pointers.

Caveat
C/C++ objects created in this manner must be explicitly destroyed. SWIG/Python
does not apply reference counting or garbage collection to C/C++ objects.

>>> v = new_Vector(1, -3, 10)
>>> w = new_Vector(0,-2.5,3)
>>> print v
_1100ef00_Vector_p
>>> print w
_1100ef20_Vector_p
>>> print dot_product(v,w)
37.5
>>> a = cross_product(v,w)
>>> print a
_1100ef80_Vector_p
>>> delete_Vector(v)
>>> delete_Vector(w)
>>> delete_Vector(a)

Notes

While it may be sensible to apply a reference counting scheme to C/C++ objects, this proves to be problematic in practice. There
are several factors :

• We often don’t know how a “pointer” was manufactured. Unless it was created by malloc() or new, it would probably be a
bad idea to automatically invoke a destructor on it.

• C/C++ programs may use objects in a manner not understood by Python. It would be a bad idea for Python to destroy an
object that was still being used inside a C program. Unfortunately, there is no way for Python to know this.

• A C/C++ program may performing its own management (reference counting, smart pointers, etc...). Python wouldn’t know
about this.

57SWIG Tutorial 7th International Python Conference

Accessing the Internals of an Object
This is also accomplished using accessor functions

• Minimally, you only need to provide access to the “interesting” parts of an object.

• Admittedly crude, but conceptually simple.

%inline %{
double Vector_x_get(Vector *v) {

return v->x;
}
void Vector_x_set(Vector *v, double val) {

v->x = val;
}
%}

>>> v = new_Vector(1,-3,10)
>>> print Vector_x_get(v)
1.0
>>> Vector_x_set(v,7.5)
>>> print Vector_x_get(v)
7.5
>>>

Notes

58SWIG Tutorial 7th International Python Conference

Accessing C++ Member Functions
You guessed it

• Basically, we just create ANSI C wrappers around C++ methods.

class Stack {
public:

Stack();
~Stack();
void push(Object *);
Object *pop();

};

%inline %{
void Stack_push(Stack *s, Object *o) {

s->push(o);
}
Object *Stack_pop(Stack *s) {

return s->pop();
}
%}

Notes

59SWIG Tutorial 7th International Python Conference

Automatic Creation of Accessor Functions
SWIG automatically generates accessor functions if given structure,
union or class definitions.

• Avoids the tedium of writing the accessor functions yourself.

%module stack

class Stack {
public:

Stack();
~Stack();
void push(Object *);
Object *pop();
int depth;

};

Stack *new_Stack() {
 return new Stack;
}
void delete_Stack(Stack *s) {
 delete s;
}
void Stack_push(Stack *s, Object *o) {
 s->push(o);
}
Object *Stack_pop(Stack *s) {
 return s->pop();
}
int Stack_depth_get(Stack *s) {
 return s->depth;
}
void Stack_depth_set(Stack *s, int d) {
 s->depth = d;
}

Notes

60SWIG Tutorial 7th International Python Conference

Parsing Support for Objects
SWIG provides parsing support for the following

• Basic structure and union definitions.

• Constructors/destructors.

• Member functions.

• Static member functions.

• Static data.

• Enumerations.

• C++ inheritance.

Not currently supported (mostly related to C++)
• Template classes (what is a template in Python?)

• Operator overloading.

• Nested classes.

However, SWIG can work with incomplete definitions
• Just provide the pieces that you want to access.

• SWIG is only concerned with access to objects, not the representation of objects.

Notes

61SWIG Tutorial 7th International Python Conference

Renaming and Restricting Members
Structure members can be renamed using %name

struct Foo {
 %name(spam) void bar(double);
 %name(status) int s;
};

Access can be restricted using %readonly and %readwrite
class Stack {
public:

Stack();
~Stack();
void push(Object *);
Object *pop();
%readonly // Enable read-only mode
int depth;
%readwrite // Re-enable write access

};

Notes

62SWIG Tutorial 7th International Python Conference

C++ Inheritance and Pointers
SWIG encodes C++ inheritance hierarchies

• The run-time type checker knows the inheritance hierarchy.

• Type errors will be generated when violations are detected.

• C++ pointers are properly cast when necessary.

class Shape {
public:
 virtual double area() = 0;
};

class Circle : public Shape {
public:
 Circle(double radius);
 ~Circle();
 double area();
};

class Square : public Shape {
 Square(double width);
 ~Square();
 double area();
};

>>> c = new_Circle(7)
>>> s = new_Square(10)
>>> print Square_area(s)
100.0
>>> print Shape_area(s)
100.0
>>> print Shape_area(c)
153.938040046
>>> print Square_area(c)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: Type error in argument 1 of
Square_area. Expected _Square_p.
>>>

Notes

63SWIG Tutorial 7th International Python Conference

Shadow Classes
Writing a Python wrapper class

• Can encapsulate C structures or C++ classes with a Python class

• The Python class serves as a wrapper around the underlying C/C++ object (and is said
to “shadow” the object).

• Easily built using pointers and low-level accessor functions.

• Contrast to writing a new Python type in C.

class Stack {
public:

Stack();
~Stack();
void push(Object *);
Object *pop();
int depth;

};

class Stack:
 def __init__(self):
 self.this = new_Stack()
 def __del__(self):
 delete_Stack(self.this)
 def push(self,o):
 Stack_push(self.this,o)
 def pop(self):
 return Stack_pop(self.this)
 def __getattr__(self,name):
 if name == ‘depth’:
 return Stack_depth_get(self.this)
 raise AttributeError,name

Notes

64SWIG Tutorial 7th International Python Conference

Automatic Shadow Class Generation
SWIG can automatically generate Python shadow classes

% swig -c++ -python -shadow stack.i

• When used, SWIG now creates two files :

stack.py # Python wrappers for the interface
stack_wrap.c # C wrapper module.

Creation of shadow classes results in a layering of two modules

• Typically, only the Python layer is accessed directly.

• The original SWIG interface is still available in the ‘stackc’ module.

Shadow classes are just an interface extension
• They utilize pointers and accessor functions.

• No changes to Python are required.

stackc.so

stack.pyPython wrappers

Low-level C wrappers

Notes

When using shadow classes, SWIG creates two modules. For example :

%module example
...
declarations
...

would result into two modules

example.py # The Python wrappers
example_wrap.c # The C wrappers

To build the module, ‘example_wrap.c’ file should be compiled and linked into a shared library with the name
‘examplecmodule.so’. Note that an extra ‘c’ has been appended to the module name.

Now, to use the module, simply use it normally. For example :

>>> import example

This will load the Python wrappers (and implicitly load the C extension module as well). To use the old C interface, you can load
it as follows :

>>> import examplec # Load original C interface.

65SWIG Tutorial 7th International Python Conference

The Anatomy of a Shadow Class
Here’s what SWIG really creates :

This file was created automatically by SWIG.
import stackc
class StackPtr :
 def __init__(self,this):
 self.this = this
 self.thisown = 0
 def __del__(self):
 if self.thisown == 1 :
 stackc.delete_Stack(self.this)
 def push(self,arg0):
 stackc.Stack_push(self.this,arg0)
 def pop(self):
 val = stackc.Stack_pop(self.this)
 return val
 def __setattr__(self,name,value):
 if name == "depth" :
 stackc.Stack_depth_set(self.this,value)
 return
 self.__dict__[name] = value
 def __getattr__(self,name):
 if name == "depth" :
 return stackc.Stack_depth_get(self.this)
 raise AttributeError,name
 def __repr__(self):
 return "<C Stack instance>"

class Stack(StackPtr):
 def __init__(self) :
 self.this = stackc.new_Stack()
 self.thisown = 1

This class defines the methods available
for a generic Stack object (given as a
pointer). The constructor for this class
simply takes a pointer to an existing
object and encapsulates it in a Python
class.

This class is used to create a new Stack
object. The constructor calls the
underlying C/C++ constructor to generate
a new object.

Notes

To effectively use shadow classes with real C/C++ programs, you must consider two cases

• The creation of new objects in Python.

• Providing access to objects that have been already created in C/C++.

The use of a pair of Python classes handles both cases. The class StackPtr above is used to provide a Python wrapper around
an existing Stack object while the class Stack is used to create a new Stack object.

One of the reasons for using two classes is to simplify the handling of object construction. If a single class were created, it might
be impossible to distinguish the two difficult cases (especially, if the real C/C++ constructor took arguments of its own).

66SWIG Tutorial 7th International Python Conference

Using a Shadow Class
This is the easy part--they work just like a normal Python class

In practice this works pretty well
• A natural interface to C/C++ structures and classes is provided.

• C++ classes work like Python classes (you can even inherit from them)

• The implementation is relatively simple (it’s just a layer over the SWIG pointer
mechanism and accessor functions)

• Changes to the Python wrappers are easy to make---they’re written in Python

>>> import stack
>>> s = Stack()
>>> s.push(“Dave”)
>>> s.push(“Mike”)
>>> s.push(“Guido”)
>>> s.pop()
Guido
>>> s.depth
2
>>> print s.this
_1008fe8_Stack_p
>>>

Notes

67SWIG Tutorial 7th International Python Conference

Nested Objects
Shadow classing even works with nested objects

• SWIG keeps track of various objects and produces appropriate Python code.

• Access to sub-objects works exactly as in C

• Everything is still being manipulated by reference (all operations are being performed
directly on the underlying C object without any data copying).

struct Vector {
 double x;
 double y;
 double z;
};

struct Particle {
 Particle();
 ~Particle();
 int type;
 Vector r;
 Vector v;
 Vector f;
};

>>> p = Particle()
>>> p.r
<C Vector instance>
>>> p.r.x = 0.0
>>> p.r.y = -7.5
>>> p.r.z = -1.0
>>> print p.r.y
-7.5
>>> p.v = p.r
>>> print p.v.y
-7.5
>>>

Notes

68SWIG Tutorial 7th International Python Conference

Managing Object Ownership
Who owns what?

• Objects created by Python are owned by Python (and destroyed by Python)

• Everything else is owned by C/C++.

• The ownership of an object is controlled by the ‘thisown’ attribute.

self.thisown = 1 # Python owns the object
self.thisown = 0 # C/C++ owns the object.

• The owner of an object is responsible for its deletion!

Caveat : sometimes you have to explicitly change the ownership

struct Node {
 Node();
 ~Node();
 int value;
 Node *next;
};

Convert a Python list to a linked list
def listtonode(l):

n = NodePtr(“NULL”);
for i in l:

m = Node()
m.value = i
n.next = m
n.thisown = 0
n = m

return n

Notes

If you understand the code example, you can safely say that you understand Python’s reference counting mechanism.

In the example, we are saving pointers to objects in the ‘next’ field of each data structure. However, consider the use of the
variables ‘n’ and ‘m’ in the Python code above. As shown, ‘n’ will be assigned to a new object on each iteration of the loop. Any
previous value of ‘n’ will be destroyed (because there are no longer any Python references to it). Had we not explicitly changed
the ownership of the object, this destruction would have also destroyed the original C object. This, in turn, would have created a
linked list of invalid pointer values---probably not the effect that you wanted.

When the ‘thisown’ variable is set to 0, Python will still destroy ‘n’ on each iteration of the loop, but this destruction only
applies to the Python wrapper class--not the underlying C/C++ object.

69SWIG Tutorial 7th International Python Conference

Extending Structures and Classes
Object extension : A cool trick for building Python interfaces

• You can provide additional “methods” for use only in Python.

• Debugging.

• Attach functions to C structures (i.e. object-oriented C programming) .

struct Image {
int width;
int height;

 ...
};

Image *imgcreate(int w, int h);
void imgclear(Image *im, int color);
void imgplot(Image *im,int x,int y,
 int color);
...

A C structure

Some C functions

class Image:
def __init__(self,w,h):

self.this = imgcreate(w,h)
def clear(self,color):

imgclear(self.this,color)
def plot(self,x,y,c):

imgplot(self.this,x,y,c)
...

>>> i = Image(400,400)
>>> i.clear(BLACK)
>>> i.plot(200,200,BLUE)

A Python wrapper class

Notes

70SWIG Tutorial 7th International Python Conference

Class Extension with SWIG
The %addmethods directive

• Same syntax as C++.

• Just specify the member functions you would like to have (constructors, destructors,
member functions).

• SWIG will combine the added methods with the original structure or class.

%module image
struct Image {

int width;
int height;
...

};
%addmethods Image {

Image(int w, int h) {
return imgcreate(w,h);

}
void clear(int color) {

return imgclear(self,color);
}
void plot(int x, int y, int color) {

return imgplot(self,x,y,color);
}

};

Notes

Unlike C++, SWIG uses the variable ‘self’ to hold the original object in added methods. One motivation for this is that class
extension is not the same as C++ inheritance nor are the new methods added to any real C++ class. Many C++ compilers would
complain about use of the ‘this’ pointer outside of a class so SWIG uses a different name.

71SWIG Tutorial 7th International Python Conference

Adding Methods (cont...)
Works with both C and C++

• Added methods only affect the Python interface--not the underlying C/C++ code.

• Does not rely upon inheritance or any C++ magic.

How it works (in a nutshell)
• SWIG creates an accessor/helper function, but uses the code you supply.

• The variable ‘self’ contains a pointer to the corresponding C/C++ object.

• If no code is supplied, SWIG assumes that you have already written a function with
the required name (methods always have a name like ‘Class_method’).

• SWIG treats the added method as if it were part of the original structure/class
definition (from Python you will not be able to tell).

%addmethods Image {
 ...
 void clear(int color) {
 clear(self,color);
 }
 ...
}

void Image_clear(Image *self, int color) {
 clear(self,color);
};

Notes

72SWIG Tutorial 7th International Python Conference

Adding Special Python Methods
%addmethods can be used to add Python specific functions

• Most of Python’s special class methods can be implemented in C/C++ and added to
structures or classes.

• Allows construction of fairly powerful Python interfaces.

typedef struct {
double x,y,z;

} Vector;

%addmethods Vector {
...
char *__str__() {
 static char str[256];
 sprintf(str,”[%g, %g, %g]”,
 self->x,self->y,self->z);
 return str;
}
};

>>> v = Vector(2,5.5,9)
>>> print v
[2, 5.5, 9]
>>>

Notes

The use of a static variable above insures that the ‘char *’ returned exists after the function call. Python will make a copy of
the returned string when it converts the result to a Python object.

A safer approach would also include some bounds checks on the result string.

73SWIG Tutorial 7th International Python Conference

Accessing Arrays of Objects
Added methods to the rescue...

• Accesing arrays of any kind of object is relatively easy.

• Provides natural access (arrays can be manipulated like you would expect).

• Similar tricks can be used for slicing, iteration, and so forth.

typedef struct {
double x,y,z;

} Vector;
...
Vector *varray(int nitems);

%addmethods Vector {
 ...
 Vector *__getitem__(int index) {

 return self+index;
 }
 ...
};

>>> a = varray(1000)
>>> print a[100]
[0, 0, 0]
>>> for i in range(0,1000):
... a[i].x = i
>>> print a[500]
[500, 0, 0]
>>>

Notes

Numeric Python also provides interesting methods for accessing large arrays of numerical data.

74SWIG Tutorial 7th International Python Conference

Making Sense of Objects (Summary)
SWIG uses a layered approach

All three modes are useful and may be mixed in the same program
• Use opaque pointers when access to an object’s internals is unnecessary.

• Use C/C++ accessor functions when occasional access to an object is needed.

• Use Python shadow classes when you want an interface that closely mimics the
underlying C/C++ object.

Python Shadow Classes

C/C++ Accessor Functions

ANSI C Wrappers

High Level Access to
C/C++ structures and objects

Helper/Accessor functions
that provide access to objects

Manipulation of objects
as opaque pointer values

Notes

Interested users might want to compare the SWIG approach to that used in other object systems such as CORBA, ILU, and COM
(in fact, some users have used SWIG in conjunction with these systems).

75SWIG Tutorial 7th International Python Conference

The SWIG Library

76SWIG Tutorial 7th International Python Conference

The SWIG Library
SWIG is packaged with a standard “library”

• Think of it as the SWIG equivalent of the Python library.

Contents of the library :
• Interface definitions to common C libraries.

• Utility functions (array creation, pointer manipulation, timers, etc...)

• SWIG extensions and customization files.

• Support files (Makefiles, Python scripts, etc...)

Using the library is easy--just use the %include directive.

• Code from the library files is simply inserted into your interface.

%module example

%include malloc.i
%include pointer.i
%include timers.i
...

Notes

77SWIG Tutorial 7th International Python Conference

Library Structure
A typical installation

/usr/local/lib/swig_lib/
 /python
 /tcl
 /perl5
 /guile
 ...

• General purpose files (language independent) are placed in the top level

• Language specific extensions are placed in subdirectories. (Python extensions are
unavailable when building a Perl module for example).

Setting the library search path (optional)
• Set the environment variable SWIG_LIB

% setenv SWIG_LIB /usr/local/lib/swig_lib

• Use the -I option

swig -I/usr/local/lib/swig_lib -I/usr/beazley/ifiles \
 interface.i

Notes

78SWIG Tutorial 7th International Python Conference

A Simple Library File
malloc.i

Using the library file
• Copy it to the SWIG library.

• Now, just use ‘%include malloc.i’ whenever you want these functions in your
interface.

Don’t rewrite--build interfaces out of bits and pieces.

// SWIG interface to some memory allocation functions
%module malloc
%{
#include <stdlib.h>
%}
void *malloc(unsigned int size);
void *calloc(unsigned int nobj, unsigned int size);
void *realloc(void *ptr, unsigned int size);
void free(void *ptr);

Notes

The %module directive found in library files is overridden (or ignored) by any modules that include the file. The functionality of
a library file is merely inserted into the module that is being created (i.e. the functions become part of the new module).

79SWIG Tutorial 7th International Python Conference

Example : The SWIG Pointer Library
%include pointer.i

• Provides high level creation, manipulation, and destruction of common types

• Can create arrays, dereference values, etc...

• The cool part : uses the SWIG type-checker to automatically infer types.

>>> a = ptrcreate(“double”,3.5)
>>> b = ptrcreate(“double”,7.0)
>>> c = ptrcreate(“double”,0.0)
>>> add(a,b,c)
>>> print ptrvalue(c)
10.5
>>> ptrset(a,-2.0)
>>> print ptrvalue(a)
-2.0
>>> ptrfree(a)
>>> ptrfree(b)
>>> ptrfree(c)

%module example
%include pointer.i

void add(double *a, double *b, double *result);

Notes

The SWIG pointer library can also perform type-casting, pointer arithmetic, and the equivalent of a run-time ‘typedef’. One of the
more useful features of the library is its dynamic deferencing operations. For example, ptrvalue will return the value of any
pointer that is one of the built-in C datatypes (int, long, short, char, float, double, etc...). The type-determination is made
dynamically (since all pointers are already encoded with that information).

80SWIG Tutorial 7th International Python Conference

Library Example : Embedding
%include embed.i

• Includes all of the code needed to build a static version of Python

• The SWIG module is added automatically.

• All builtin Python modules (found in Setup) are also included.

• Compare to the process described earlier.

%module example
%include embed.i
...

% swig -python example.i
% cc -c example_wrap.c -I/usr/local/include/python1.5 \
 -I/usr/local/lib/python1.5/config
% ld example_wrap.o -L/usr/local/lib/python1.5/config \
 -lModules -lPython -lObjects -lParser -ldl -lsocket -lm \
 -o mypython

Notes

81SWIG Tutorial 7th International Python Conference

Library Example : Support Files
Need a Python Makefile in a hurry?

% swig -python -co Makefile
Makefile checked out from the SWIG library
%

• Copies a preconfigured Python Makefile from the library into the current directory.

• Edit it and you’re off and running.

Generated automatically from Makefile.in by configure.

$Header:$
SWIG Python Makefile
#
This file can be used to build various Python extensions with SWIG.
By default this file is set up for dynamic loading, but it can
be easily customized for static extensions by modifying various
portions of the file.
#--

SRCS =
CXXSRCS =
... etc ...

Notes

In principle any kind of file can be placed in the SWIG library. Think of it as a repository of useful stuff.

82SWIG Tutorial 7th International Python Conference

Preprocessing

83SWIG Tutorial 7th International Python Conference

Preprocessing
SWIG contains a modified version of the C preprocessor

• Conditional compilation of interface files.

• Macro expansion (SWIG 1.2).

Caveat : the SWIG preprocessor differs as follows
• #include definitions are ignored.

• C/C++ comments are left in the source (these are used for documentation)

• #define statements are used to create constants (require special handling).

Note :
SWIG 1.1 and earlier provide limited conditional compilation. SWIG 1.2 (under
development) provides full support for macro expansion and most of the other
capabilities of a full preprocessor.

Notes

84SWIG Tutorial 7th International Python Conference

Making Mixed Header/Interface Files
SWIG directives can be placed in C header files

• The SWIG symbol is defined whenever SWIG is running.

• Conditionally compile SWIG directives into a header file when needed.

This approach makes it a little easier to keep interfaces consistent.

#ifndef _HEADER_H
#define _HEADER_H
#ifdef SWIG
%module example
%{
#include “header.h”
%}
#endif
...

/* Don’t wrap this */
#ifndef SWIG
void foobar(double (*func)(), ...);
#endif

Notes

85SWIG Tutorial 7th International Python Conference

Working with Macros (SWIG 1.2)
Macro expansion can be used with very complex header files

• Macros can be used as long as they eventually result in an ANSI C/C++ declaration.

• In extreme cases, one could probably redefine most of SWIG’s syntax (at the expense
of really confusing yourself and others).

#ifndef HEADER_H
#define HEADER_H
#ifdef SWIG
%module example
%{
#include “header.h”
%}
#endif
#define EXTERN extern
#define _ANSI_ARGS_(a) a
...
EXTERN void spam _ANSI_ARGS_((int a, double b));

Notes

86SWIG Tutorial 7th International Python Conference

SWIG Macros
%define directive can be used for larger macros

// Make SWIG wrappers around instantiations of a C++ template class
%{
#include “list.h”
%}
// Define a macro that mirrors a template class definition
%define LIST_TEMPLATE(name,type)
%{
typedef List<type> name;
%}
class name {
public:
 name();
 ~name();
 void append(type);
 int length();
 type get(int n);
};
%enddef

// Now create wrappers around a bunch of different lists
LIST_TEMPLATE(IntList,int)
LIST_TEMPLATE(DoubleList,double)
LIST_TEMPLATE(VectorList, Vector *)
LIST_TEMPLATE(StringList,char *)

Notes

While SWIG only supports a subset of C/C++, it often possible to workaround these problems in clever ways. For example, the
above code generates wrappers around a few C++ template instantiations using a combination of a ‘typedef’ and a class definition
(which is only given to SWIG).

87SWIG Tutorial 7th International Python Conference

Advanced SWIG Features

88SWIG Tutorial 7th International Python Conference

Exception Handling
Python has a nice exception handling mechanism...we should use it.

• Translating C error conditions into Python exceptions.

• Catching C++ exceptions.

• Improving the reliability of our Python modules.

The %except directive
• Allows you to define an application specific exception handler

• Fully configurable (you can do anything you want with it).

• Exception handling code gets inserted into all of the wrapper functions.

%except(python) {
 try {
 $function /* This gets replaced by the real function call */
 }
 catch(RangeError) {
 PyErr_SetString(PyExc_IndexError,”index out-of-bounds”);

return NULL;
}

}

Notes

89SWIG Tutorial 7th International Python Conference

SWIG Exception Library
SWIG includes a library of generic exception handling functions

• Language independent (works with Python, Tcl, Perl5, etc...)

• Mainly just a set of macros and utility functions.

Other things to note
• Exception handling greatly improves the reliability of C/C++ modules.

• However, C/C++ applications need to be written with error handling in mind.

• SWIG can be told to look for errors in any number of ways--as long as there is an error
mechanism of some sort in the underlying application.

%include exceptions.i
%except(python) {
 try {
 $function
 }
 catch(RangeError) {

SWIG_exception(SWIG_IndexError,”index out-of-bounds”);
}

}

Notes

SWIG is not limited to C++ exceptions or formal exception handling mechanisms. An exception handling might be something as
simple as the following :

%except(python) {
 $function
 if (check_error()) {

char *msg = get_error_msg();
SWIG_exception(SWIG_RuntimeError,msg);

}
}

where check_error() and get_error_msg() are C functions to query the state of an application.

90SWIG Tutorial 7th International Python Conference

Typemaps
Typemaps allow you to change the processing of any datatype

• Handling of input/output values.

• Converting Python objects into C/C++ equivalents (tuples,lists, etc...)

• Telling SWIG to use new Python types.

• Adding constraint handling (the constraint library is really just typemaps).

Very flexible, very powerful
• You can do almost anything with typemaps.

• You can even blow your whole leg off (not to mention your foot).

• Often the topic of discussion on the SWIG mailing list

Caveats
• Requires knowledge of Python’s C API to use effectively.

• It’s possible to break SWIG in bizarre ways (an interface with typemaps might not even
work).

• Impossible to cover in full detail here.

Notes

91SWIG Tutorial 7th International Python Conference

Typemaps : In a Nutshell
What is a typemap?

• A special processing rule applied to a particular (datatype,name) pair.

double spam(int a, int);

(double,”spam”) (int,”a”) (int,””)

Pattern Matching Rules
• SWIG looks at the input and tries to apply rules using a pattern matching scheme

• Examples :

(int,””) # Matchs all integers
(int,”a”) # Matches only ‘int a’
(int *,””) # Matches ‘int *’ and arrays.
(int [4],””) # Matches ‘int[4]’
(int [ANY],””) # Matches any 1-D ‘int’ array
(int [4][4],”t”) # Matches only ‘int t[4][4]’

• Multiple rules may apply simultaneously

• SWIG always picks the most specific rule.

Notes

92SWIG Tutorial 7th International Python Conference

The Typemap Library
typemaps.i

• A SWIG library file containing a variety of useful typemaps.

• Handling input/output arguments and other special datatypes.

• Hmmm. This is much different than the standard pointer model we saw before

• Typemaps allow extensive customization!

%module example
%include typemaps.i

void add(double *INPUT,double *INPUT, double *OUTPUT);

%apply int OUTPUT { int *width, int *height };
void get_viewport(Image *im, int *width, int *height);

>>> add(3,4)
7.0
>>> a = get_viewport(im)
>>> print a
[500,500]
>>>

Notes

The typemaps.i file contains a number of generally useful typemaps. You should check here before writing a new typemap from
scratch.

93SWIG Tutorial 7th International Python Conference

Writing a New Typemap
Prerequisites

• Need to relatively comfortable with SWIG

• Should be somewhat familar with Python extension writing (and the Python C API)

The %typemap directive
• Used to define new SWIG typemaps at a low level.

• The code given to a typemap is inserted directly into wrapper functions.

• The variables $source,$target,$type, etc... are filled in with the names of C
variables and datatypes.

• Rule of thumb : $source is original data. $target contains the result after
processing.

// Some simple SWIG typemaps
%typemap(python,in) int {

if (!PyInt_Check($source)) {
 PyErr_SetString(PyExc_TypeError,”Argument $argnum not an integer!”);
 return NULL;

 }
 $target = ($type) PyInt_AsLong($source);
}

Notes

94SWIG Tutorial 7th International Python Conference

How Typemaps Work
%typemap(python,in) int {
 ... see previous slide ...
}

int spam(int a, int b);

static PyObject *_wrap_spam(PyObject *self, PyObject *args) {
 PyObject * _resultobj;
 int _result, _arg0, _arg1;
 PyObject * _obj0 = 0, *_obj1 = 0;
 if(!PyArg_ParseTuple(args,"OO:spam",&_obj0,&_obj1))
 return NULL;
{
 if (!PyInt_Check(_obj0)) {
 PyErr_SetString(PyExc_TypeError,"Argument 1 not an integer!");
 return NULL;
 }
 _arg0 = (int) PyInt_AsLong(_obj0);
}
{
 if (!PyInt_Check(_obj1)) {
 PyErr_SetString(PyExc_TypeError,"Argument 2 not an integer!");
 return NULL;
 }
 _arg1 = (int) PyInt_AsLong(_obj1);
}
 _result = (int)spam(_arg0,_arg1);
 _resultobj = Py_BuildValue("i",_result);

 return _resultobj;
}

typemap

typemap

Notes

95SWIG Tutorial 7th International Python Conference

Typemap Methods
Typemaps can be defined for a variety of purposes

• Function input values (“in”)

• Function output (“out”)

• Default arguments

• Ignored arguments

• Returned arguments.

• Exceptions.

• Constraints.

• Setting/getting of structure members

• Parameter initialization.

The SWIG Users Manual has all the gory details.

Notes

96SWIG Tutorial 7th International Python Conference

Typemap Applications
Consider our OpenGL example

• Needed to manufacture and destroy 4-element arrays using helper functions.

Now a possible typemap implementation
• We define a typemap for converting 4 element tuples to 4 element arrays.

• Rebuild the OpenGL interface with this typemap.

• Yes, that’s much nicer now...

>>> torus_diffuse = newfv4(0.7,0.7,0.0,1.0);
>>> glMaterialfv(GL_FRONT, GL_DIFFUSE,torus_diffuse);
...
>>> delfv4(torus_diffuse)

>>> torus_diffuse = (0.7,0.7,0.0,1.0)
>>> glMaterialfv(GL_FRONT, GL_DIFFUSE,torus_diffuse)

or simply ...

>>> glMaterialfv(GL_FRONT, GL_DIFFUSE,(0.7,0.7,0.0,1.0))

Notes

97SWIG Tutorial 7th International Python Conference

Python Tuple to Array Typemap
// Convert a 4 element tuple to a 4 element C array
%typemap(python,in) double[4] (double temp[4]) {
 if (PyTuple_Check($source)) {
 if (!PyArg_ParseTuple($source,”dddd”, temp, temp+1, temp+2, temp+3)) {
 PyErr_SetString(PyExc_TypeError,”expected a 4-element tuple of floats”);
 return NULL;
 }
 $target = temp;
 } else {
 PyErr_SetString(PyExc_TypeError,”expected a tuple.”);
 return NULL;
 }
}

Notes

98SWIG Tutorial 7th International Python Conference

Typemaps : The Bottom Line
Typemaps can be used to customize SWIG

• Changing the handling of specific datatypes.

• Building better interfaces.

• Doing cool things (consider Mark Hammond’s Python-COM for instance).

Typemaps can interface with other Python types
• Python lists could be mapped to C arrays.

• You could provide a different representation of C pointers.

• It is possible to use the types of other Python extensions (NumPy, extension classes,
etc...).

Some caution is in order
• Typemaps involve writing C/C++ (always risky).

• Understanding the Python C API goes a long way.

• Typemaps may break other parts of SWIG (shadow classes in particular).

99SWIG Tutorial 7th International Python Conference

Practical Matters

100SWIG Tutorial 7th International Python Conference

Practical Issues
You’ve had the grand tour, now what?

• Migrating existing applications to Python.

• Problems and pitfalls in interface generation.

• Working with shared libraries.

• Run-time problems.

• Performance considerations.

• Debugging a Python extension.

Python extension building is only one piece of the puzzle

Notes

101SWIG Tutorial 7th International Python Conference

Migrating Applications to Python
C/C++ code is usually static and rigid

• Perhaps it’s a big monolithic package.

• Control is usually precisely defined.

• Example : parse command line options and do something.

Python/SWIG provides a much more flexible environment
• Can execute any C function in any order.

• Internals are often exposed.

• This is exactly what we want!

Problem
• Applications may break in mysterious ways.

Notes

102SWIG Tutorial 7th International Python Conference

Function Execution Dependencies
Functions may implicitly assume prior execution of other functions

• Perhaps foo() was always called before bar() in the original application.

Can add additional state to fix these problems
int foo_init = 0;
...
foo() {
 ...
 foo_init = 1;
}
...
bar() {
 if (!foo_init) error(“didn’t call foo!”);
 ...
}

foo()
bar()

bar()
foo()

OK Segmentation Fault

Notes

103SWIG Tutorial 7th International Python Conference

Reentrant Functions
Other functions may only work once

bar() ---> OK
bar() ---> Error

Can fix in the same way
bar() {
 static int bar_init = 0;
 if (bar_init) error(“already called bar!”);
 ...
 bar_init = 1;
}

Notes

104SWIG Tutorial 7th International Python Conference

Namespace Conflicts
C/C++ Namespace collisions

• A C/C++ application may have a namespace conflict with Python’s implementation.

• Fortunately this is rare since most Python functions start with ‘Py’.

• C/C++ function names may conflict with Python commands.

• C/C++ libraries may have namespace collisions with themselves.

Resolving conflicts with Python built-in commands
• Use the SWIG %name() to rename functions.

Resolving conflicts with the Python C implementation
• Change the name of whatever is conflicting (may be able to hide with a macro).

Resolving conflicts between different C libraries
• Tough to fix.

• Dynamic linking may fix the problem.

• Good luck!

Notes

105SWIG Tutorial 7th International Python Conference

Linking Problems
Extensions usually have to be compiled and linked with the same
compiler as Python

• Mismatches may result in dynamic loading errors.

• May just result in a program crash.

Third-party libraries may have problems
• Position independent code often needed for dynamic loading.

• If compiled and linked with a weird compiler, you may be out of luck.

Other components
• SWIG does not provide Python access to generic shared libraries or DLLs.

• Nor do COM components work (look at the Python-COM extension).

Notes

106SWIG Tutorial 7th International Python Conference

More on Shared Libraries
Shared libraries and C++

• A little more tricky to build than C libraries.

• Require addition runtime support code (default constructors, exceptions, etc...)

• Need to initialize static constructors when loaded.

• Not documented very well.

Rules of thumb when building a dynamic C++ extension
• Try linking the library with the C++ compiler

CC -shared example.o example_wrap.o -o examplemodule.so

• If that doesn’t work, link against the C++ libraries (if you can find them)

ld -G example.o example_wrap.o -L/opt/SUNWspro/lib \
 -lC -o examplemodule.so

cc -shared example.o example_wrap.o -lg++ -lstdc++ -lgcc
 -o examplemodule.so

• If that still doesn’t work, try recompiling Python’s main program and relinking the
Python executable with the C++ compiler.

Notes

107SWIG Tutorial 7th International Python Conference

Mixing Shared and Static Libraries
Linking dynamic Python extensions against static libraries is
generally a bad idea :

• When both Python modules are created, they are linked against libspam.a.

What happens :
>>> import foo
>>> import bar
>>> bar.set_spam(42)
>>> print foo.get_spam()
7

(hmmm... this probably isn’t what we expected)

/* libspam.a */
static int spam = 7;
int get_spam() {
 return spam;
}
void set_spam(int val) {
 spam = val;
}

%module foo
...
extern int get_spam();
...

%module bar
...
extern void set_spam(int);
...

Notes

108SWIG Tutorial 7th International Python Conference

The Static Library Problem
Linking against static libraries results in multiple or incomplete
copies of a library

• Neither module contains the complete library (the linker only resolves used symbols).

• Both modules contain a private copy of a variable.

Consider linking against a big library (like OpenGL, etc...)
• Significant internal state is managed by each library.

• Libraries may be resource intensive and have significant interaction with the OS.

• A recipe for disaster.

Solution : use shared libraries

foo bar
int spam;
int get_spam();

int spam;
void set_spam(int);

Notes

109SWIG Tutorial 7th International Python Conference

Using Shared Libraries
If using dynamic loading, use shared libraries

• The process of building a shared library is the same as building a Python extension.

Building and linking Python extensions
• Compile and link normally, but be sure to link against the shared library.

Now it works
>>> import foo
>>> import bar
>>> bar.set_spam(42)
>>> foo.get_spam()
42
>>>

/* libspam.so */
static int spam = 7;
int get_spam() {
 return spam;
}
void set_spam(int val) {
 spam = val;
}

% cc -c spam.c
Irix
% ld -shared spam.o -o libspam.so
Solaris
% ld -G spam.o -o libspam.so
Linux
% cc -shared spam.o -o libspam.so

Notes

110SWIG Tutorial 7th International Python Conference

More Shared Libraries
Resolving missing libraries

• You may get an error like this :

ImportError: Fatal Error : cannot not find ‘libspam.so’

• The run-time loader is set to look for shared libraries in predefined locations. If your
library is located elsewhere, it won’t be found.

Solutions
• Set LD_LIBRARY_PATH to include the locations of your libraries

% setenv LD_LIBRARY_PATH /home/beazley/app/libs

• Link the Python module using an ‘rpath’ specifier (better)

% ld -shared -rpath /home/beazley/app/libs foo_wrap.o \
 -lspam -o foomodule.so
% ld -G -R /home/beazley/app/libs foo_wrap.o \
 -lspam -o foomodule.so
% gcc -shared -Xlinker -rpath /home/beazley/app/libs \
 foo_wrap.o -lspam -o foomodule.so

• Unfortunately, the process varies on every single machine (sigh).

111SWIG Tutorial 7th International Python Conference

Performance Considerations
Python introduces a performance penalty

• Decoding

• Dispatch

• Execution of wrapper code

• Returning results

These tasks may require thousands of CPU cycles

Rules of thumb
• The performance penalty is small if your C/C++ functions do a lot of work.

• If a function is rarely executed, who cares?

• Don’t write inner loops or perform lots of fine-grained operations in Python.

• Performance critical kernels in C, everything else can be in Python.

From personal experience
• Python inroduces < 1% performance penalty (on number crunching codes).

• Your mileage may vary.

112SWIG Tutorial 7th International Python Conference

Debugging Dynamic Modules
Suppose one of my Python modules crashes. How do I debug it?

• There is no executable!

• What do you run the debugger on?

• Unfortunately, this is a bigger problem than one might imagine.

My strategy
• Run the debugger on the Python executable itself.

• Run the Python program until it crashes.

• Now use the debugger to find out what’s wrong (use as normal).

Caveats
• Your debugger needs to support shared libraries (fortunately most do these days).

• Some debuggers may have trouble loading symbol tables and located source code for
shared modules.

• Takes a little practice.

113SWIG Tutorial 7th International Python Conference

Where to go from here

114SWIG Tutorial 7th International Python Conference

Topics Not Covered
Modifying SWIG

• SWIG can be extended with new language modules and capabilities.

• Python-COM for example.

Really wild stuff
• Implementing C callback functions in Python.

• Typemaps galore.

SWIG documentation system
• It’s being rethought at this time.

Use of other Python extensions
• Modulator

• ILU

• NumPY

• MESS

• Extension classes

• etc....

Notes

115SWIG Tutorial 7th International Python Conference

SWIG Resources
Web-page

http://www.swig.org

FTP-server
ftp://ftp.swig.org

Mailing list (for now)
swig@cs.utah.edu

To subscribe, send a message ‘subscribe swig’ to majordomo@cs.utah.edu.

Documentation
SWIG comes with about 350 pages of tutorial style documentation (it also
supports Tcl and Perl so don’t let the size scare you).

Notes

